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Abstract
Objectives  The present study evaluates the extent of 
association between hepatitis C virus (HCV) infection and 
cardiovascular disease (CVD) risk and identifies factors 
mediating this relationship using Bayesian network (BN) 
analysis.
Design and setting  A population-based cross-sectional 
survey in Canada.
Participants  Adults from the Canadian Health Measures 
Survey (n=10 115) aged 30 to 74 years.
Primary and secondary outcome measures  The 10-
year risk of CVD was determined using the Framingham 
Risk Score in HCV-positive and HCV-negative subjects. 
Using BN analysis, variables were modelled to calculate 
the probability of CVD risk in HCV infection.
Results  When the BN is compiled, and no variable 
has been instantiated, 73%, 17% and 11% of the 
subjects had low, moderate and high 10-year CVD risk, 
respectively. The conditional probability of high CVD 
risk increased to 13.9%±1.6% (p<2.2×10-16) when 
the HCV variable is instantiated to ‘Present’ state and 
decreased to 8.6%±0.2% when HCV was instantiated to 
‘Absent’ (p<2.2×10-16). HCV cases had 1.6-fold higher 
prevalence of high-CVD risk compared with non-infected 
individuals (p=0.038). Analysis of the effect modification 
of the HCV-CVD relationship (using median Kullback-
Leibler divergence; D

KL) showed diabetes as a major 
effect modifier on the joint probability distribution of HCV 
infection and CVD risk (DKL=0.27, IQR: 0.26 to 0.27), 
followed by hypertension (0.24, IQR: 0.23 to 0.25), age 
(0.21, IQR: 0.10 to 0.38) and injection drug use (0.19, IQR: 
0.06 to 0.59).
Conclusions  Exploring the relationship between HCV 
infection and CVD risk using BN modelling analysis 
revealed that the infection is associated with elevated CVD 
risk. A number of risk modifiers were identified to play a 
role in this relationship. Targeting these factors during the 
course of infection to reduce CVD risk should be studied 
further.

Introduction
The prevalence of hepatitis C virus (HCV) 
infection is estimated to be around 3% world-
wide and 1.3% in North America.1 The infec-
tion causes chronic liver diseases in 170 to 

200 million people worldwide rendering it 
a leading factor in the aetiology of progres-
sive liver fibrosis that results in cirrhosis, liver 
cancer, liver failure and death.2 3 Presently, 
the rate of mortality among persons living 
with HIV infection falls behind those living 
with HCV,3 ranking the latter among the top 
causes of death globally4 and the leading 
infection-related cause of mortality in North 
America.5 While HCV exerts its main effects in 
the liver, over the past decade several lines of 
evidence emerged to suggest it as a causative 
factor in a number of extrahepatic manifesta-
tions6 including abnormal endocrine, haema-
tological, neurological and renal functions.7–9 
Although yet to be fully substantiated,10 11 
evidence suggest that patients with chronic 
HCV infection exhibit elevated rates of cause-
specific mortality from cardiovascular disease 
(CVD).12–15 The role of HCV in the manifesta-
tion of CVD was thought to be related to the 

Strengths and limitations of this study

►► This is the first study to introduce Bayesian network 
(BN) analysis to characterise the aetiological role of 
hepatitis C virus (HCV) infection in cardiovascular 
disease (CVD) risk in a Canadian adult population.

►► The study examined 10 115 subjects aged 30 to 74 
years from the Canadian Health Measures Survey, 
a cross-sectional survey of the non-institutionalised 
civilian residents.

►► Assessment for the 10-year risk of CVD in asymp-
tomatic individuals was carried by estimating the 
Framingham Risk Score algorithm in both HCV-
positive and HCV-negative subjects.

►► Machine learning algorithms using BNs were used 
to determine the relationship between HCV and CVD 
risk in the study population.

►► The study did not capture the status of HIV or the use 
of direct-acting antiviral therapy, factors that may 
have a significant effect on the relationship between 
HCV infection and CVD risk.
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interference of infection with glucose and lipid metabo-
lism and the subsequent risk of type 2 diabetes and CVD.16 
Recently, in addition to this altered profile of cardiomet-
abolic risk factors, we reported a distinctive pattern of 
acute phase reactants (such as C-reactive protein, fibrin-
ogen and homocysteine) in the HCV infected patients 
compared with non-infected subjects, implicating the 
status of chronic inflammation in the elevated CVD risk 
associated with HCV infection.17 Furthermore, vascular 
endothelial dysfunction resulting in carotid atheroscle-
rotic plaques has been proposed to play a role in CVD 
risk among HCV-infected individuals.18–20

Despite proposing a number of mechanisms and an 
array of causative factors, the aetiological relationship 
between HCV infection and risk of CVD is still speculative 
as described above. Together with experimental work, 
and clinical studies, the potential causal links between 
HCV infection and CVD risk can be further explored, 
predicted and ascertained using population-based data 
sets. This direction represents the first step towards 
identification of disease-causing mechanisms, treatment 
and control.21 A fundamental step in analysing big data 
or large population-based data sets is to identify rela-
tions among a large number of variables in a data set.22 
Bayesian networks (BN) are a widely-used class of proba-
bilistic graphical models that represent a set of variables 
and their conditional dependencies, permitting the iden-
tification of relationships that may highlight causality.22 
These relationships are represented by a graphical struc-
ture, whereas the quantitative dependencies between indi-
vidual variables is expressed by conditional probability.23

A BN is defined by a graph structure of nodes (vari-
ables) connected by directed edges and a set of condi-
tional probabilities. The generated model is dynamic 
where the probability of all variables changes by changing 
the state of one variable and reveals the influences and 
interactions between the depicted variables.23 The model 
has been used for intelligent information processing in 
many scientific fields, ranging from biomedical to social 
sciences, for example, risk prediction, diagnosis and 
assessment,24 25 clinical decision-making,26 inference of 
causation27 and social network analysis.28 Over the past 
few years, BNs have been extensively used to model clin-
ical problems in CVD for the purposes of diagnosis, risk 
assessment and disease prediction.29–33 In the present 
study, we introduced a BN analysis to evaulate the aetio-
logical role of HCV infection in CVD risk. Our objective is 
to characterise the multivariable probabilistic connection 
between the two diseases and identify factors that mediate 
and influence this relationship in a population of Cana-
dian adults.

Methods
Study population
Data were collected from the Canadian Health Measures 
Survey (CHMS), a cross-sectional survey of the non-
institutionalised civilian Canadian residents aged 3 to 

79 years, designed to collect information on the health 
and wellness as well as nutrition status of the population. 
The CHMS covers approximately 96.3% of the Canadian 
population at the selected age group. The current study 
uses a cohort that we previously described.17 Briefly, partic-
ipants in this study were obtained from CHMS cycles 1 
to 4, collected between March 2007 and December 2015 
(n=5604, 6395, 5785 and 5794 for cycles 1, 2, 3 and 4, 
respectively, n=23 578). The multistage sampling design, 
participation and data collection methods have been 
comprehensively mentioned elsewhere.34–36 Participation 
was voluntary and was through a household interview that 
included general sociodemographic questions as well as 
an in-depth health questionnaire. Participants subse-
quently visited a mobile examination centre (MEC) where 
physical and biological measurements were collected.37

Assessment for the 10-year risk of cardiovascular disease
The 10-year CVD risk was estimated in subjects who were 
asymptomatic at baseline and aged 30 to 74 years, using 
the Framingham Risk Score (FRS) algorithm in both 
HCV-positive (HCV+) and HCV-negative (HCV−) cases as 
previously described.17 38 39 As per the conditions of the 
FRS algorithm, we excluded subjects under the age of 30 
years or over the age of 74 years (n=12 348). History of 
CVD was assessed via self-report as the participants were 
asked if they have or had heart disease and if they have 
ever been told by health professional that they have or had 
heart attack. Patients with confirmed or a history of heart 
diseases (n=888) were excluded. We also excluded partic-
ipants with missing data for any of the components used 
in the FRS algorithm that included age, gender, blood 
pressure, total cholesterol (T-Chol), high-density lipopro-
tein cholesterol (HDL-C), smoking status, diabetes and 
anti-hypertensive medication (n=51). Furthermore, we 
did not include participants missing information on HCV 
status or with an indeterminate HCV infection (n=176). 
The total number of participants included in the present 
study was 10 115 subjects (male:female ratio of 1:1.12). 
This group was further divided to HCV-positive (HCV+, 
n=87) and HCV-negative (HCV–, n=10 028) subgroups. 
In both subgroups, we calculated the FRS score for each 
participant. The points assigned for each risk factor are 
based on the value for the β-coefficient of the propor-
tional hazard regressions.38 39 The 10-year risk score was 
then derived as a percentage. As previously described,39 
the 10-year CVD risk is categorised into low (FRS <10%), 
moderate (10% to 19%) or high (≥20%) based on the 
derived estimate.

Assessment of hepatitis C infection
Infection with HCV was determined using serum speci-
mens screened for anti-HCV antibodies or HCV-RNA. 
HCV-positive status was considered if HCV-RNA was 
present in the serum and/or a confirmed antibody test 
yielded positive results. Participants with indeterminate 
anti-HCV and without RNA testing were considered 
‘unknown’ and were excluded as HCV status could not 
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be determined with certainty. HCV infection was detected 
using VITROS Anti-HCV Assay (Ortho Clinical Diag-
nostics, Raritan, New Jersey, USA). All samples positive 
on initial screening for anti-HCV were confirmed by 
INNO-LIA HCV Score immunoblot assay (Innogenetics, 
Fujirebio Inc, Georgia, USA). All HCV-positive patients 
(n=87) had anti-HCV testing performed. Among those, 
21 subjects were also examined for HCV-RNA, 14 of which 
were positive for HCV-RNA. Data on genotypes and sub-
genotypes was previously described.17 Information on the 
use of the recent direct-acting antivirals or the length of 
stay in prison in HCV positive or negative groups (if any) 
were not captured.

Metabolic markers, sociodemographic factors and other 
covariates
A number of metabolic markers were measured in the 
study including cardiometabolic disease markers (apoli-
poprotein (Apo) A1 (g/L), ApoB (g/L), low-density 
lipoprotein cholesterol (LDL-C) (mmol/L), HDL-C 
(mmol/L), T-Chol (mmol/L), T-Chol:HDL-C ratio, 
triglycerides (mmol/L) and glycosylated haemoglobin 
(HbA1c) (%)); inflammatory biomarkers (C-reactive 
protein (mg/L), fibrinogen (g/L) and homocysteine 
(μmol/L)); systolic and diastolic blood pressure and 
plasma 25-hydroxyvitamin D (25(OH)D) (nmol/L) as 
well as factors related to obesity such as body mass index 
(kg/m2), waist circumference (cm) and waist-to-hip 
ratio were all assessed as described previously.40 Diabetes 
status was defined as a self-reported or HbA1c ≥6.5%0.41 
Assessing metabolic syndrome was carried out as previ-
ously described.42 Individuals who have been diagnosed 
as hypertensive, diabetic or those who were using antihy-
pertensive drugs were included.40 43 44 Insulin resistance 
(IR) was approximated using the homoeostatic model 
assessment (HOMA-IR) formula ((glucose (mmol/L) x 
insulin (μIU/mL)) ÷ 22.5) as described.17 Liver functions 
were evaluated in the study subjects using serum enzyme 
markers of alanine aminotransferase, alkaline phospha-
tase, aspartate aminotransferase, lactate dehydroge-
nase and γ-glutamyl transferase (U/L). Furthermore, a 
number of serum micronutrients including vitamins B12 
(pmol/L) and D (nmol/L) were measured and captured 
in the present study. Sociodemographic information such 
as age, gender, ethnicity, education, marital status, history 
of injection drug use and household income was assessed 
through responses to questionnaires given during the 
structured interview portion of the survey. Ethnicity was 
categorised into four main subgroups: White, African-
Americans, Asian (ie, Korean, Filipino, Japanese, 
Chinese, South Asian, Southeast Asian, Arab and West 
Asian) and Other (ie, Latin American or mixed racial 
origins). Household income was dichotomised according 
to self-reported income below or above $20 000 per 
annum. Self-reported smoking status was categorised into 
smokers (daily/occasional) and non-smokers. A compre-
hensive list of all metabolic markers, sociodemographic 

factors and other covariates assessed in the present study 
are listed in online supplementary table S1.

Bayesian network analysis and statistical methods
Machine learning algorithms using BNs were used to 
determine the associations between HCV infection and 
CVD risk in the study population.

Bayesian network formalism
According to the chain rule of probability, for any set of 
N categorical variables {X1, X2,…, XN}, the joint probability 
distribution (JPD) was:

	﻿‍
P(X1, X2, ..., Xn) =

N∏
i=1

P(Xi | Xi+1, ..., XN)
‍�

Given a directed acyclic graph (DAG) over the varia-
bles, the parents of any variable ‍Xi‍ denoted by ‍Pa

(
Xi

)
‍ is 

the set of variables in the DAG that have a directed edge 
(→) to ‍Xi‍. For a BN induced by a DAG, the JPD factorises 
as follows:

	﻿‍
P(X1, X2, ..., Xn) =

N∏
i=1

P(Xi | Xi+1, ..., XN) =
N∏
i=1

P(Xi | Pa(Xi))
‍�

For example, given the two node BN with the config-
uration X1→X2, the JPD is P(X1,X2)=P(X2|X1) P(X1). In 
a BN, any variable Xi is independent of all other varia-
bles conditioned on its Markov blanket MB(Xi), which 
is the set containing Pa(‍Xi‍), the children of ‍Xi‍ (ie, have 
a directed edge from ‍Xi‍) and parents of children of Xi.
MB(Xi), if fully observed, provides all the information 
about ‍Xi‍ in a BN. Detailed statistical description of BNs 
can be found elsewhere.45 46 The property stating that any 
node X is conditionally independent of any other node, 
given its Markov blanket, is the global Markov property. 
Another property that has been taken into account is the 
local Markov condition, that is, a node X is conditionally 
independent of those of all its non-descendants given the 
set of all its parents. The flow of influence has been taken 
into consideration, when two variables (nodes) are d-sep-
arated for different types of connections.45 46

Learning Bayesian network structure from missing data
We excluded variables containing >20% missing values 
from our analysis and assumed that missingness was at 
random. To learn BN structures from missing data, we 
used structural expectation maximisation (EM). EM is 
an algorithm for finding maximum likelihood estimates 
of models with latent parameters by iteratively calcu-
lating the expectation of the model with respect to the 
parameter estimates (usually initialised randomly) at the 
current EM step, and then finding parameters that maxi-
mise this expectation.

For initialising EM, we sampled 20 DAGs from a 
uniform distribution over the space of connected DAGs 
with a maximum degree of 3 using the method by Ide and 
Cozman47 implemented in the R package bnlearn.48 These 
DAGs were parametrised on the data set (see Bayesian 
network parametrisation) and used to initialise 20 inde-
pendent EM runs. Convergence for EM was assessed using 
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the structural Hamming distance (SHD)49 of the DAG at 
the current EM step relative to the previous EM step. An 
SHD, which is the number of edge additions, deletions or 
reversals required to transform one graph to another, of 
<20 was assumed to signify convergence because SHD did 
not reliably decrease if additional EM steps were allowed. 
Following convergence, the resulting 20 structures were 
averaged to retain oriented edges that occurred in at least 
50% of the structures. This was the highest decile that did 
not render the three outcomes of interest independent.

For the maximisation step of EM, we used the score-
based hill climbing structure learning algorithm46 to 
search the space of DAGs that maximise the Bayesian 
information criterion (BIC), a commonly used penalised 
maximum likelihood-based model score. Hill climbing is 
a greedy local search algorithm that performs sequential 
edge modifications (edge additions, reversals and dele-
tions) to find a DAG that maximises a given network score. 
No constraints on edge orientations or presence/absence 
were placed during training. The validity of the recov-
ered final structure was assessed visually by comparing 
it to known/expected relationships, such as between 
correlated variables (eg, diabetes and obesity) and caus-
ally related variables (eg, having hypertension and taking 
blood pressure medicine). Model averaging over 20 struc-
tures from EM was done to reduce uncertainty in model 
learning to select a robust model structure.

Learning Bayesian network parameters
Network parameters were learnt using Bayesian estima-
tion, which calculates the expected value of the posterior 
distribution over the parameters. A Dirichlet prior with 
an equivalent sample size of 1 was used as a weak prior 
over the parameters.

Approximate inference using likelihood weighting
To calculate the probability of a given query from the BN, 
we used a form of importance sampling called likelihood 
weighting implemented in bnlearn. Briefly, given a BN and 
an ordering over variables induced by the DAG underlying 
the BN, we can sample from the network (with or without 
conditioning) from a proposal distribution (usually the 
uniform distribution) along with weights that represents 
the probability of acceptance of the sample from the 
target distribution (represented by the trained BN). The 
probability of the query is computed by dividing the sum 
of the weights of all samples that were equal to the query 
of interest by the total weight of all samples.

Calculating predictiveness of variable for an outcome
We used conditional entropy H(Y|X) as the measure of 
predictiveness of an outcome Y by a predictor X, H(Y|X) 
quantifies the averaged reduction in uncertainty about 
the outcome Y conditioned on having observed the vari-
able X. Conditional entropy is defined as follows:

	﻿‍
H(y | X) =

∑
x∈X

∑
y∈Y

p(x, y).log2

(
p(x)

p(x,y)

)
‍�

If X is perfectly predictive of Y, the conditional entropy 
H(Y|X)=0 since there is no uncertainty about Y given X. 
The maximum value of conditional entropy is achieved 
when X and Y are independent and is equal to the entropy 
of Y which is:

	﻿‍
H(y) =

∑
y∈Y

p(y).log p(y)
‍�

Therefore, conditional entropy is bounded by 0 
≤H(Y|X) ≤H(Y). For the predictive index (PI) reported 
in the paper, we normalised H(Y|X) by dividing it by H(Y) 
and inverted the values such that a value of 0 represents 
independence and 1 representing perfect prediction 
using the following transformation:

	﻿‍
PI(Y | X) = 1 −

(
H(Y|X)
H(Y)

)
‍�

Effect modification
A variable X was defined to be an effect modifier of 
outcomes Y and Z if the joint probability distribution 
of Y and Z conditioned on X, that is, P(Y,Z|X=x), was 
not constant for x ∈X. The strength of effect modifica-
tion was calculated as the median Kullback-Leibler (KL) 
divergence (DKL)—also known as relative entropy50—for 
Qx=P(Y,Z|X=x) ∀x ∈X. For example, for a variable X, we 
calculated DKL(Qi ||Qj) where i ≠ j for all i, j ∈X. The KL 
divergence is an asymmetric measure of how similar a 
candidate probability distribution B(x) is to some refer-
ence distribution A(x), and is equal to:

	﻿‍
DKL(A | B) =

∑
x∈X

A(x).log
(

A(x)
B(x)

)
‍�

In all cases, DKL(A|B)≥0,with it being 0 if the two distri-
butions are identical. Effect modification refers to the 
scaled and inverted KL divergence calculated using the 
following transformation:

	﻿‍

EffMod(Y, Z | X) =

1 − exp
(
−medhum(

{
DKL(Qi || Qj)∀i, j ∈ X | i ̸= j

}
)
)
‍�

A scaled KL divergence of zero for a variable X implies 
that the joint distribution of the outcomes was identical 
for different values of X, that is, X was not an effect modi-
fier. A scaled KL divergence of 1 implies the highest effect 
modification observed among survey variable.

Guidelines and principles published by CHMS were used 
to combine survey data over multiple cycles.51 Data from 
each cycle were treated as a completely random popula-
tion sample and survey weights were excluded from all 
analyses. All analyses were performed on untransformed, 
unadjusted and unweighted data. To describe baseline 
characteristics, frequency distributions and proportions 
were reported for categorical data whereas means (±SD) 
were reported for continuous data.

Patient and public involvement
No patient involved.
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Results
Respondents who were eligible for this study (n=10 115) 
had an average age of 49.2±12.5 years and an approxi-
mately 1:1 male:female ratio (table  1). Among study 
participants, HCV infection was prevalent in 1% of the 
population. As shown in table 1, approximately 73% of 
the study subjects had a low 10-year CVD risk (ie, FRS 
<10%), 17% had a moderate risk (10% to 19%) and 11% 
were at high risk (FRS ≥20%). HCV-positive (HCV+) 
cases, had a FRS of 10.5%±8.8%, which was significantly 
higher (p=0.008) than their HCV-negative (HCV−) coun-
terparts (8.0%±6.6%). Furthermore, subjects with HCV 
infection had a 1.6-fold higher prevalence of high-CVD 
risk (ie, FRS ≥20%) compared with non-infected individ-
uals (p=0.038). Marital status, level of education, house-
hold income, use of intravenous drug and smoking status 
were all significantly different between HCV− and HCV+ 
cases (table 1). Diabetes (assessed as self-reported or with 
HbA1c ≥6.5%) was found in 8% of the participants with 
a higher prevalence in the HCV+ cases. Total cholesterol 
levels and total cholesterol:HDL-C ratio were significantly 
higher in HCV+ cases whereas fasting triglycerides, LDL-C 
and apolipoprotein B levels were significantly lower in this 
group compared with their levels in non-HCV-infected 
individuals. Furthermore, liver enzyme markers were—as 
expected—all significantly increased in those who were 
HCV+.

The BN structures of the Markov blankets for HCV and 
CVD is shown in figure 1. The Markov blanket of CVD 
risk network structure included traditional CVD risk vari-
ables such as age, sex, obesity, diabetes, smoking status, 
hypertension and high levels of cholesterol (figure 1A). 
However, the HCV infection network structure primarily 
included factors such as smoking status and past illicit 
drug injections (figure  1B). Full BN structure for the 
entire set of variables examined here is provided in online 
supplementary figure S1. It clearly demonstrates diabetes 
as a primary risk modifier that influences the interaction 
between HCV infection and CVD risk.

As shown in figure  2, age and blood pressure were 
the most predictive variables for CVD risk (figure  2A) 
whereas injection drug use, alcohol use, smoking status 
and a number of diet-related factors were most predictive 
of HCV infection (figure 2B). The top 30 survey variables 
that were used to generate figure 2 to predict CVD risk 
in HCV infection are provided in online supplementary 
table S2. The conditional probabilities of CVD risk in the 
presence and absence of HCV infection, as estimated 
from the BN model, are shown in table 2. The presence 
of HCV infection resulted in an increased probability of 
CVD risk. The probabilities of medium (16.4%±0.28% vs 
21.5±1.5%) and high (8.6%±0.16% vs 13.9±1.55%) risk 
of CVD were significantly elevated in individuals infected 
with HCV. In contrast, the probability of low-CVD risk 
was decreased (75.0%±0.29% vs 64.2±1.78%) in the pres-
ence of HCV infection. Since age was a significant vari-
able that had an effect modifier on the joint probability 
distribution of HCV and CVD, we estimated the variation 

in the conditional probabilities through the different age 
intervals (table 3). The conditional probability of being 
infected with HCV was increased from 0.66±0.11 at age 
group 30 to 40 years to 0.87±0.21 at >70 whereas that of 
CVD was increased from 0.07±0.05 to 33.8±1.37 within 
the same age groups.

The extent to which the joint distribution of HCV infec-
tion and CVD risk varies in the presence of a given effect 
modifier was quantified using the KL divergence (DKL). 
Figure 3 shows the full set of modifiers of the joint proba-
bility distributions between HCV infection and CVD risk. 
The insert in figure 3 highlights the top factors modifying 
the HCV-CVD association. Diabetes (any type) had the 
largest divergence, that is, the top effect modifier of the 
pairwise joint probability distribution between HCV infec-
tion and CVD risk (median scaled DKL of 0.27; IQR, 0.26 
- 0.27). This was followed by hypertension (DKL=0.24; IQR, 
0.23 - 0.25), age (DKL=0.21; IQR, 0.10 - 0.38) and injection 
drug use (DKL=0.19; IQR, 0.06 - 0.59). Median scaled DKL 
values ranging from 0.03 to 0.06 were observed for other 
factors such as HbA1C, smoking, history of cancer and 
metabolic syndrome.

Discussion
The present study applies a BN analysis and machine 
learning techniques to explore the probabilistic relation-
ship between HCV infection and CVD risk in Canadian 
adults. HCV infection was associated with an increased 
probability of CVD risk of 5.3% (table 2). Diabetes was 
the most prominent effect modifier of this relationship 
(figure  3) in our analysis, suggesting the disruption of 
pathways involved in glucose metabolism, insulin resis-
tance and liver function as the leading factors in CVD 
comorbidities related to HCV infection.

BN analysis was both informative (figure  1A) and 
predictive (figure 2A) in implicating a number of conven-
tional risk factors, for example, age, sex, obesity, diabetes, 
smoking status, hypertension and serum lipid profiles52 
in CVD risk. In addition, lifestyle factors, for example, 
illicit drug use, smoking and alcohol consumption, were 
predictive of CVD risk in HCV infection (figures 1B and 
2B). The findings demonstrating that injecting drug use 
is highly associated with HCV infection are well supported 
by previous studies showing that injection drug use may 
result in more cases of HCV than HIV.53 Furthermore, 
a recent study using data from the National Health and 
Nutrition Examination Survey cohort reported that, 
among smokers, those with HCV infection are more 
likely to be daily smokers and had smoked for longer.54 
Additionally, alcohol abuse was found to hinder the 
processes of hepatic spontaneous clearance of HCV.55 
Overall, conventional risk factors for CVD and HCV 
infection were highlighted by the Markov blankets and 
BN models demonstrating the abilities of the graphical 
elements in BN—irrespective of expert opinion—to 
generate and build convenient models structuring and 
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Table 1  Sociodemographic and clinical characteristics in the study populations stratified by the hepatitis C virus infection

Characteristic

All* HCV negative HCV positive

P value(n=10 115) (n=10 028) (n=87)

Males 47%† 47% 53%

Age (years) 49.2±12.5 49±13 51±10 0.0333‡

Ethnicity

 � White 80% 80% 80% 0.0023‡

 � Black 2% 2% 2%

 � Asian 11% 11% 3%

 � Other 6% 6% 14%

Marital status

 � Married 70% 71% 34% <0.0013‡

 � Divorced 17% 17% 28%

 � Single 12% 12% 38%

Highest level of education

 � Less than grade 12 11% 11% 23% <0.0013‡

 � High-school graduate 20% 19% 32%

 � Post-secondary graduate 69% 68% 45%

Household income

 � < $20 000 per annum 8% 7% 41% <0.0013‡

History of intravenous drug use 1% 1% 53% <0.0013‡

Smoking status

 � Daily/occasional 19% 18% 57% <0.0013‡

 � Non-smoker 81% 82% 30%

Diabetes (self-reported or HbA1c ≥6.5%)¶ 8% 8% 13%

Cardiometabolic markers

 � Systolic blood pressure (mm Hg) 114±16 114±15 115±21

 � Diastolic blood pressure (mm Hg) 73±9 73±9 75±10 0.0314§

 � Triglycerides, fasting (mmol/L) 1.43±0.89 1.43±0.89 1.15±0.52 0.0474§

 � Total cholesterol (mmol/L) 5.06±1.02 3.94±1.27 4.50±0.97 <0.0014§

 � LDL-C, fasting (mmol/L) 3.02±0.92 3.03±0.92 2.48±0.89 <0.0014§

 � HDL-C (mmol/L) 1.38±0.40 1.38±0.40 1.42±0.45

 � Total cholesterol:HDL-C ratio 3.93±1.27 3.94±1.27 3.37±1.01 <0.0014§

 � Insulin, fasting (pmol/L) 77±67 77±67 94±62

 � Glucose, fasting (mmol/L) 5.3±1.27 5.3±1.26 5.63±2.23

 � HOMA-IR 3.5±3.9 3.5±3.9 4.4±3.5

 � HbA1c (%) 5.61±0.77 5.61±0.77 5.67±0.88

 � Apolipoprotein A1, fasting (g/L) 1.46±0.27 1.46±0.27 1.49±0.28

 � Apolipoprotein B, fasting (g/L) 0.97±0.26 0.97±0.26 0.75±0.20 <0.0014§

Obesity

 � Body mass index (kg/m2) 27.8±5.7 27.9±5.7 26.9±5.7

 � Waist circumference (cm) 94.6±15.3 94.6±15.3 94.5±15.7

 � Waist-to-hip ratio 0.90±0.11 0.90±0.10 0.93±0.1 0.0044§

Inflammatory markers

 � C-reactive protein (mg/L) 2.5±2.9 2.5±2.9 2.5±3.2

 � Fibrinogen (mmol/L) 3.1±0.6 3.1±0.6 2.9±0.6 0.0424§

 � Homocysteine (umol/L) 8.2±3.0 8.2±3.0 9.0±3.3

Continued
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Characteristic

All* HCV negative HCV positive

P value(n=10 115) (n=10 028) (n=87)

Micronutrients

 � Vitamin B12 (pmol/L) 340±193 340±193 362±145

 � Vitamin D (nmol/L) 64±26 64±26 64±27

Liver enzyme markers

 � Alanine aminotransferase (U/L) 34±17 33±16 63±54 <0.0014§

 � Alkaline phosphatase (U/L) 78±24 78±24 90±36 0.0044§

 � Aspartate aminotransferase (U/L) 28±13 28±12 55±47 <0.0014§

 � γ-Glutamyl transferase (U/L) 32±40 32±37 92±176 0.0024§

 � Lactate dehydrogenase (U/L) 381±86 381±86 427±67 0.0284§

Framingham risk score (FRS, %) 9.6±9.5 8.0±6.6 10.5±8.8 0.0084§

 � Low (FRS <10%) 73% 73% 62%

 � Medium (FRS=10% to 19%) 17% 17% 20%

 � High (FRS >20%) 11% 11% 18% 0.0383‡

*Numbers represent percentage of the corresponding group or mean±SD.
†Percentages are for unweighted frequency.
‡χ2 test for the difference between hepatitis C virus-positive (HCV+) and hepatitis C virus-negative (HCV−) cases.
§t-test for the difference between hepatitis C virus-positive (HCV+) and hepatitis C virus-negative (HCV−) case. Only significant differences 
are shown.
¶Diabetes defined as Hb1Ac ≥6.5% or self-reported cases as per survey questionnaire.
HbA1c, glycosylated haemoglobin; HCV, hepatitis C virus; HDL-C, high-density lipoprotein cholesterol; HOMA-IR, homoeostatic model 
assessment insulin resistance; LDL-C, low-density lipoprotein cholesterol.

Table 1  Continued

Figure 1  Markov blankets of the Bayesian network structures learnt in Canadian adults. Markov blanket of hepatitis C 
virus infection (A) and Markov blanket for cardiovascular disease (B) in the Bayesian network. BP, blood pressure; CVD, 
cardiovascular disease.

detecting probabilistic relationships between the exam-
ined variables.

In line with observations from a number of earlier 
reports,4 17 56 we noted a significant increase in the condi-
tional probability of CVD risk (from 8.6% to 13.9%) in 

presence of HCV infection (table  2). As we reported 
previously,17 a number of hepatic and extrahepatic 
processes related to HCV infection may explain the 
observed increased CVD risk. For example, the develop-
ment of hepatic steatosis and the later manifestation of 
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Figure 2  Outcome prediction of 10-year cardiovascular disease risk and hepatitis C infection in Canadian adults. BMI, 
body mass index; BP, blood pressure; BPM_131A, diastolic blood pressure - first set (3); BPMD161, average systolic blood 
pressure (mm Hg) first; BPMDPBPS, final previous average systolic blood pressure; C2_MTH, month of household interview; 
C2_YEAR, year of household interview; CCC_32, past medication for high blood pressure; CCC_51, has diabetes; CCC_93, 
has liver disease or gallbladder problem; CCC_95, has hepatitis; CCCF1, has a chronic condition; CLC_AGE, age at clinic 
visit; CLC_MOB, month of birth; CVD, cardiovascular disease; DHH_AGE, age at household interview; DHH_BED, dwelling 
- number of bedrooms; DHH_MOB, month of birth; DHH_PRN, province of residence; DHH_YOB, year of birth; DHHD611, 
number of persons 6 to 11 years in household; DHHDDWE, type of dwelling; DHHDECF, household type; DHHDHSZ, household 
size; DHHDL12, number of persons <12 years old in household; DHHDLE5, number of persons ≤5 years old in household; 
DHHDLVG, living arrangements for selected respondents; DHHDYKD, number of persons ≤15 years old in household; 
EDUDH10, highest level of education; FMH_19, immediate family had diabetes; GC_AGE_GROUP, age groups (10 year age 
groupings); GC_age10ygrps, 10 year age groups 30 to 74 years; GC_ATP3_HYPERTENSION, high blood pressure (BP ≥130/85 
or HTN medication); GC_ATP3_OVERALL, number of ATPIII syndromes; GC_ATP3_OVERALL_GR, ATP-III group (groups of 0, 
1, 2 and 3+); GC_BMI, body mass index; GC_BMI_OBESE, obesity (BMI ≥30 kg/m2); GC_CVDRISKGRP_P, 10-year CVD risk 
group (Framingham risk score); GC_DIABETES, self-reported diabetes (any type) based on fasting glucose; GC_DRUG_INJ, 
ever used needle injections for drugs; GC_ETHNICITY, ethnicity; GC_HTN_MED_CURRENT, current medication for high 
blood pressure (past month); GC_HX_HIGHCHOL, history of high cholesterol; GC_SMOKE_CURRENT, current smoker; 
GC_WAIST_CIRCUM, waist circumference (cm); GEN_16, employment; GFV_16, number of eats of instant/seasoned/wild 
rice; GSMD52, grip strength norms for respondents; HTN, hypertension; HWM_15 CM, hip circumference (cm); HWMD14IN, 
waist circumference (in); HWMD15IN, hip circumference (in); HWMDBMI, body mass index; HWMDWSTA, waist circumference 
norm for respondents 15 to 69 years; HWMDWTH, waist-to-hip ratio; HWTDBMI, body mass index, self-reported; LAB_HBA1, 
hepatitis B virus surface antigen; LAB_HBC, hepatitis B virus core antibody; SACDTOT, total hours of sedentary activity over 
the last 3 months; SMK_11, smoked 100 or more cigarettes in lifetime; SMK_12, type of smoker; SMKDSTY, type of smoker in 
dwelling; SPMDB1FP, predicted body mass index; V2_YEAR, year of clinic visit.
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Table 2  Conditional probabilities (%) of low, medium and 
high 10-year CVD risk in the presence and absence of 
hepatitis C virus infection in adult Canadians

Conditional Probability (%)

Hepatitis C Virus 
Infection

CVD risk

Low
(FRS<10%)
(72.7%)*

Medium
(FRS 10%–19%)
(16.6%)

High
(FRS≥20%)
(10.7%)

Absent (99.1%) 75.0±0.29 16.4±0.28 8.6±0.16

Present (0.9%) 64.2±1.78 21.5±1.50 13.9±1.55

P 2.2×10–16 2.2×10–16 2.2×10–16

*Percentage in parenthesis represents the estimated conditional 
probability in the different states when the BN has been 
compiled without any variable instantiated.
BN, Bayesian network; CVD, cardiovascular disease; FRS, 
Framingham Risk Score.

Table 3  Variation in the conditional probabilities for 
hepatitis C virus infection and cardiovascular disease risk at 
different age intervals in Canadian adults

Age groups

Conditional probability (%)

Probability of 
having HCV

Probability of high 
CVD risk

30–40 0.66±0.11 0.07±0.05

40–50 0.65±0.11 1.12±0.14

50–60 0.74±0.14 8.18±0.54

60–70 0.80±0.15 22.7±0.57

>70 0.87±0.21 33.8±1.37

CVD, cardiovascular disease; HCV, hepatitis C virus.

insulin sensitivity, metabolic abnormalities and visceral 
obesity19 57 together with altered LDL-C,58 59triglycerides 
and ApoB60 were all noted at progressive stages of chronic 
HCV infection and deteriorating liver functions. This 
altered profile of serum lipids indicates that HCV infec-
tion may result in the imbalance of serum lipoproteins/
apolipoproteins, a known risk factor in atherosclerosis 
and the later development of CVD.61 Additional evidence 
for the role of viraemia on cardiometabolic risk markers 
and CVD risk is that HCV cases positive for the viral DNA 
had lower total cholesterol, LDL-C and total cholester-
ol:HDL-C ratio than the RNA-negative HCV infected 
cases.17 Another explanation for the role of HCV infec-
tion in CVD risk might be due to the alteration in the 
levels of proinflammatory cytokines and the downstream 
acute phase reactants (APR), for example, fibrinogen, 
in chronic infection as liver cirrhosis worsened.17 62 It is 
possible, therefore, that the severity of cirrhosis and alter-
ation in the haemostatic regulation of the fibrinolytic 
system (that is linked to control of inflammation) are 
interrelated to play a role in CVD risk.8 As such, activa-
tion of inflammatory processes, disruption of cytokine 

synthesis and imbalance in APR homoeostasis all are well-
known risk factors in the increased CVD risk.63–65

Diabetes status (any) was the largest effect modifier 
of the joint probability distribution between HCV infec-
tion and CVD risk with 0.274 median DKL. Chronic HCV 
impairs hepatocyte insulin signalling pathways leading to 
insulin resistance and the subsequent risk of diabetes via 
increasing the synthesis of tumour necrosis factor alpha, 
mediating the phosphorylation of insulin receptors and 
causing an over expression of suppressor cytokines.66 67 
Several previous reports have demonstrated that patients 
with HCV infection exhibit elevated HOMA-IR,68 higher 
burden of cardiometabolic comorbidities68 and increased 
diabetes-related mortality rates68 compared to healthy 
controls. Our results confirm previous reports demon-
strating lower levels ApoB60 in chronic HCV infection. This 
lower level of lipoprotein, together with the lower levels 
of triglycerides and LDL-C (table 2) reflect a disrupted 
pattern of serum lipids and can lead to the deterioration 
of liver functions during HCV infection. It may also indi-
cate that the virus itself can be involved in the imbalance 
of serum lipoproteins/apolipoproteins.60 Alterations in 
hepatic lipid metabolism is known to be responsible for 
the acceleration of atherogenesis, a significant risk factor 
in the development of cardiovascular diseases.69

Given the role of insulin resistance in diabetes and 
the subsequent risk of CVD, it is reasonable to suggest 
diabetes as a modifier for the HCV-associated CVD risk 
through extrahepatic insulin resistance related pathways 
(online supplementary table S2).69 In support to this 
assumption, an increased risk of diabetes was observed 
in the HCV-infected subjects examined here (data not 
shown). Although not well-defined in some studies,70 
several reports and meta-analyses revealed an association 
between HCV infection and diabetes risk.71–75 Further-
more, liver cirrhosis, a common manifestation of HCV 
infection2 3 is a known risk factor in diabetes.76–78 The 
results of our machine-learnt BNs have identified age, 
ethnicity and gender as risk modifiers of the joint proba-
bility distribution between HCV infection and CVD risk. 
These factors are known to increase the risk of diabetes 
in HCV cases at high risk of cirrhosis due to concurrent 
non-alcoholic fatty liver.78 As expected, the conditional 
probability of having CVD has been increased with age 
together with that of being infected with HCV (although 
to a much lesser extent, table 3). Such differences in the 
prevalence of HCV and CVD risk in relation to age were 
previously noted.17

Modelling the statistical relationships between covari-
ates without the assumption of independence of variables 
that is involved in linear regression approaches is a key 
strength of applying a machine-learnt BNs.22 23 Linking 
multiple covariates and outcomes into a single trans-
parent modelling assumption, generating an intuitive 
graphical representation of a complex system and the 
ability to handle missing data and multicollinearity has 
led to the increasing use of BNs in medicine and health-
care systems.25–27 Our introduction of BN analysis into a 
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Figure 3  Median Kullback-Leibler (KL) divergence effect modification on the joint probability distributional relationship of 
hepatitis C infection and cardiovascular disease risk. The survey variables with the largest effect modification for Markov blanket 
of hepatitis C virus infection and Markov blanket for cardiovascular disease in the Bayesian network. The insert highlights the 
top factors modifying the association.

nationally-representative and population-based surveys 
has provided—without prior assumptions—a number 
of sociodemographic and biological variables that may 
influence the effect of HCV infection of CVD risk. The 
significance of this approach can be highlighted by the 
fact that several of the variants characterised here were 
previously recognised as risk factors for HCV and CVD 
risk. Additionally, novel aetiologies for the HCV-related 
CVD risk can be substantiated from a set of risk modifiers 
that were identified in the present study, such as diabetes, 
hypertension, age, injection drug use, smoking status, 
levels of glycosylated haemoglobin, history of cancer and 
metabolic syndrome.

The present study has several limitations. The status 
of HIV was not captured in the study participants as this 
factor was self-reported and deemed unreliable.We realise 
that coinfection of HCV and HIV can have a synergistic 
effect on increasing the risk of CVD as reported else-
where.79 Furthermore,detailed clinical features of partic-
ipants, such as the degree of liver fibrosis, cirrhosis or 
non-alcoholic fatty liver disease were not evaluated in the 
study population. These factors would have been valuable 
for classifying the extent of liver functions and damage 
and could have further emphasised on other modifiers 

for the relationship between HCV infection and CVD 
risk. For example, information on fatty liver would have 
added more weight to the role of diabetes in modifying 
the risk of CVD in HCV infection as it is a known risk 
factor for both diabetes and CVD.78 80 Furthermore, only 
approximately 25% of the anti-HCV positive patients had 
been tested for HCV-RNA and only ~60% of the tested 
patients were HCV-RNA positive. Although previously 
reported,17 data on genotypes and sub-genotypes were 
not considered in this study. Additionally, the study did 
not consider the use of direct-acting antiviral (DAA) 
therapy. Viral eradication by DAA therapy has been asso-
ciated with decreased risk of CVD events among cirrhotic 
HCV individuals.81 82 Also, DAA treatment in diabetic 
patients has resulted in a significant improvement of the 
related CVD events.83 Information on the treatment for 
HCV infection would have shed insight into the sustained 
viraemia of the HCV-infected subjects assessed here and 
may have provided a detailed clinical response to the 
infection and the affected metabolic pathways. These 
limitations warrant further studies to consider the status 
of HIV, a detailed liver function profile and the use of 
DAA into understanding the relationship between HCV 
infection and CVD risk.

 on July 9, 2024 by guest. P
rotected by copyright.

http://bm
jopen.bm

j.com
/

B
M

J O
pen: first published as 10.1136/bm

jopen-2019-035867 on 5 M
ay 2020. D

ow
nloaded from

 

http://bmjopen.bmj.com/


11Badawi A, et al. BMJ Open 2020;10:e035867. doi:10.1136/bmjopen-2019-035867

Open access

In conclusion, we have introduced a novel 
approach—applying BN modelling and machine 
learning algorithms—to investigate the relationship 
between HCV infection and CVD risk in a population-
based survey data set. Our results provide evidence that 
increased CVD risk is likely to arise from HCV infection. 
Several factors, to varying degrees, were identified to play 
a role in the increased HCV-related CVD risk including 
diabetes, hypertension, age, injection drug use, smoking, 
levels of glycosylated haemoglobin, history of cancer and 
metabolic syndrome. It may be reasonable, therefore, to 
suggest that if these factors are targeted during the course 
of HCV infection, the risk of CVD could be reduced. 
However, before any such interventions are proposed, 
further research needs to be conducted to study the 
direct effect of DAA therapy on HCV infected individuals 
with and without chronic sequelae of infection to enable 
a reliable evaluation for the CVD risk in this population.
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